An article from Norwegian SciTech News at SINTEF

The tiny pressure sensor looks like a pinprick on a finger. (Photo: Werner Juvik/SINTEF)

Lifesaving sensor for full bladders

A small pressure sensor can make the difference between life and death for people who can not control their bladder.

Denne artikkelen er over ti år gammel og kan inneholde utdatert informasjon.

Gemini, SINTEF

SINTEF is a broadly based, multidisciplinary research concern with international expertise in technology, medicine and the social sciences.

More than 220,000 people in Norway suffer from a neurological disease that means that they have difficulties with urinating and incontinence, and have problems controlling their bladders. About 3,000 of these are particularly badly affected. 

Spinal cord injuries can damage the nerve supply to the bladder, meaning that people cannot tell when their bladder is full and needs to be emptied. This then creates an excessively high pressure on the bladder, which affects the kidneys and can lead to damages that may be life-threatening.

Measuring pressure with a catheter

"Measuring pressure in the bladder is essential in order to see whether an operation is necessary, or whether the condition can be treated with medication. The measurements reveal how the bladder fills and empties," explains Dr Thomas Glott at Sunnaas Rehabilitation Hospital in Norway.

Currently, measurements are taken using a catheter which is inserted into the urethra so that the bladder can be filled with water. This is uncomfortable for the patient, and since the bladder is filled with saline at an unnaturally high speed, the method is also unreliable.

Pin sensor

For many years, researchers at the Norwegian research organisation SINTEF, have been working on developing tiny sensors for measuring pressure in the body. 

When the opportunity to work closely with Sunnaas Rehabilitation Hospital came up, they decided to focus on measuring pressure in the bladder.

Ingelin Clausen, who works in the MiNaLab at SINTEF ICT, demonstrates the tiny pressure sensor that looks like a pinprick on her finger.

"Unlike a catheter, this sensor can be inserted under the skin," she explains.

Thomas Glott adds that this is done by inserting a thin needle through the skin and into the bladder.

"The sensor is positioned without causing discomfort to the patient, who can then move about normally without the disruptive catheter, and the risk of infection is reduced."

Test plans

The sensor is now being tested on three patients at the hospital. One long-term plan is to test the system on 20–30 patients.

"Working with Sunnaas has given us a great chance to try out our technology on patients. It has also provided a useful insight into other medical applications. Our long-term aim is to develop a method of implanting the sensor more permanently, since many patients need measurements to be taken regularly,"says Clausen.

"These would be sensors that could be implanted for several months or years."

At the moment, the sensor is connected to a thin wire, but the next step would be to make it wireless.

Another long-term option could be to allow the measurements to be read by a smart phone. That way, any increase in pressure could be detected even when patients are at home, thereby avoiding resource-intensive and uncomfortable examinations in hospital.

External links

Related content
Powered by Labrador CMS